metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

$[Cu{C_2(COO)_2}(H_2O)_3] \cdot H_2O$, the first copper complex of acetylenedicarboxylic acid

Heinrich Billetter, Frauke Hohn, Ingo Pantenburg and Uwe Ruschewitz*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany Correspondence e-mail: uwe.ruschewitz@uni-koeln.de

Received 27 January 2003 Accepted 12 February 2003

Accepted 12 February 200 Online 21 March 2003

In the title compound, *catena*-poly[[[triaquacopper(II)]- μ -acetylenedicarboxylato- $\kappa^2 O:O''$] hydrate], {[Cu(C₄O₄)-(H₂O)₃]·H₂O}_n, the Cu^{II} ion is coordinated by two monodentate carboxylate groups in *trans* positions and three water molecules, thus forming a fivefold coordination polyhedron that can be described as a distorted square pyramid. All atoms are located on general sites. The polyhedra are connected by bifunctional acetylenedicarboxylate ligands, to form almost linear chains parallel to [001]. Hydrogen bonds involving the non-coordinated water molecule connect these chains to form a three-dimensional framework.

Comment

During our studies of coordination polymers of the acetylenedicarboxylate dianion, $C_2(COO)_2^{2-}$ (Hohn *et al.*, 2002; Ruschewitz & Pantenburg, 2002), blue crystals of the title compound, (I), were obtained, and its crystal structure is presented here.

The structure of (I) comprises fivefold coordination polyhedra at the Cu^{II} ions, which are linked by bifunctional acetylenedicarboxylate ligands to form almost linear chains. The coordination polyhedron around the Cu^{II} ion, which can be described as a distorted square pyramid, is formed by two monodentate carboxylate groups in *trans* positions and three water molecules (Fig. 1). As the longest Cu–O distance (Cu1–O6) is about 0.3 Å longer than the second longest Cu–O distance (Cu1–O41ⁱ; Table 1), the Cu coordination can alternatively be described as a slightly distorted square planar

Figure 1

A view of (I), showing the atom-numbering scheme for the asymmetric unit. Displacement ellipsoids are shown at the 50% probability level and H-atom radii are arbitrary.

coordination, with an additional water ligand weakly bonded in an axial position. This coordination of the Cu^{II} ion is similar to that found in $[Cu_2(CH_3COO)_4]\cdot 2H_2O$ (Cu-O = 1.96– 1.99 Å and Cu-OH₂ = 2.20 Å; van Niekerk & Schoening, 1953). In contrast to the latter compound, however, where a short Cu-Cu distance (2.64 Å) extends the CuO₅ polyhedron to a distorted octahedron, no short Cu-Cu distances are found in (I) [the shortest is Cu1···Cu1^{iv} = 5.246 (12) Å].

The C–O bond distances of the coordinating O atoms are significantly longer than the C–O distances of the non-coordinating O atoms (Table 1), which indicates that the latter are more characteristic of double bonds and which is consistent with these O atoms having slightly higher U_{eq} values. The C– C distances in the acetylenedicarboxylate dianion are as expected for single (C1–C2 and C3–C4) and triple (C2==C3) bonds (Table 1). The dianion is almost linear (Table 1), but in contrast to [Cd{C₂(COO)₂}(H₂O)₃]·H₂O (Ruschewitz & Pantenburg, 2002), the carboxylate groups of the anion are not coplanar. The torsion angles are 26.6 (2) and 25.8 (3)°.

The CuO₅ polyhedra are linked by the bifunctional carboxylates to form almost linear chains running parallel to [001] (Fig. 2). A linear polymeric chain structure was also found in $[Co{C_2(COO)_2}(H_2O)_4] \cdot 2H_2O$ (Pantenburg & Ruschewitz, 2002), which is another example of a coordination polymer of acetylenedicarboxylate that crystallizes in a chain structure, with Co^{II} coordinated octahedrally by two monodentate carboxylate groups in *trans* positions and four water

The crystal packing of (I), showing two polymeric chains connected by hydrogen bonds, which involve the non-coordinated H81/O8/H82 water molecule. Three of the four hydrogen bonds around O8 are shown, namely $05\cdots08$, $07\cdots08$ and $042\cdots08$ (see Table 2). H atoms have been omitted for clarity.

molecules. However, in $[Cd{C_2(COO)_2}(H_2O)_3]$ ·H₂O (Ruschewitz & Pantenburg, 2002), a polymeric zigzag chain is formed.

In all of the compounds mentioned above, the chains are connected by hydrogen bonds that include additional water molecules. In (I), the shortest hydrogen bonds $[O \cdot \cdot \cdot O = 2.694 (3) - 2.742 (3) \text{ Å}]$ connect the polymeric chains to form layers parallel to (100). These layers are connected by slightly longer hydrogen bonds $[O \cdots O = 2.759 (2) -$ 2.771 (2) Å] to form a three-dimensional network.

Experimental

CuCl₂·2H₂O (0.85 g, 5 mmol) and acetylenedicarboxylic acid (0.57 g, 5 mmol) were dissolved in de-ionized water (20 ml). After slow evaporation at room temperature, blue crystals of (I) formed. These were filtered off and immediately sealed in a capillary, as the crystals decompose slowly in air forming a black shock-sensitive solid which is amorphous to X-rays. This residue is probably Cu_2C_2 (McCormick et al., 2001). No decomposition of the single crystal was observed during the X-ray analysis.

Crystal data

	2
$[Cu(C_4O_4)(H_2O)_3] \cdot H_2O$	$D_x = 1.936 \text{ Mg m}^{-3}$
$M_r = 247.64$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 12 049
a = 6.5261 (8) Å	reflections
b = 7.0683 (9) Å	$\theta = 1.9-35.3^{\circ}$
c = 18.417 (2) Å	$\mu = 2.59 \text{ mm}^{-1}$
$\beta = 90.418 \ (10)^{\circ}$	T = 293 (2) K
$V = 849.54 (18) \text{ Å}^3$	Polyhedron, blue
Z = 4	$0.2 \times 0.1 \times 0.1 \text{ mm}$
Data collection	
Stoe IPDS-II diffractometer	2468 independent reflections
Oscillation φ and ω scans	1766 reflections with $I > 2\sigma(I)$
Absorption correction: numerical	$R_{\rm int} = 0.066$
(X-SHAPE and X-RED; Stoe &	$\theta_{\rm max} = 30.0^{\circ}$
Cie, 2001)	$h = -9 \rightarrow 9$
$T_{\min} = 0.296, T_{\max} = 0.541$	$k = -9 \rightarrow 9$
23 355 measured reflections	$l = -25 \rightarrow 25$

Table 1

Selected geometric parameters (Å, °).

Cu1-O7	1.9396 (18)	C1-011	1.273 (2)
Cu1-O11	1.9555 (15)	C1-C2	1.472 (3)
Cu1-O5	1.9588 (17)	C2-C3	1.191 (3)
Cu1-O41 ⁱ	1.9677 (14)	C3-C4	1.469 (3)
Cu1-O6	2.2961 (19)	C4-O42	1.233 (2)
C1-O12	1.231 (3)	C4-O41	1.270 (3)
O7-Cu1-O11	86.92 (8)	O41 ⁱ -Cu1-O6	92.24 (7)
O7-Cu1-O5	169.60 (10)	O12-C1-O11	125.76 (19)
O11-Cu1-O5	92.34 (7)	O12-C1-C2	118.93 (18)
$O7-Cu1-O41^{i}$	89.79 (8)	O11-C1-C2	115.31 (18)
O11-Cu1-O41 ⁱ	176.12 (7)	C3-C2-C1	178.6 (3)
$O5-Cu1-O41^i$	90.52 (8)	C2-C3-C4	178.0 (2)
O7-Cu1-O6	96.66 (9)	O42-C4-O41	125.28 (19)
O11-Cu1-O6	90.19(7)	O42-C4-C3	119.17 (19)
O5-Cu1-O6	93.72 (9)	O41-C4-C3	115.55 (17)

Symmetry code: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$O5-H51\cdots O11^{ii}$	0.78 (4)	2.00 (4)	2.771 (2)	171 (4)
O5−H52···O8 ⁱⁱⁱ	0.73 (4)	2.02 (4)	2.742 (3)	170 (3)
$O7-H71\cdots O12^{iv}$	0.79 (4)	1.91 (4)	2.694 (3)	171 (4)
O7−H72···O8	0.77(4)	1.95 (4)	2.696 (3)	164 (4)
$O8-H81\cdots O42^{iv}$	0.85(5)	1.87 (5)	2.722 (3)	174 (4)
$O8{-}H83{\cdots}O41^{v}$	0.63 (4)	2.13 (4)	2.759 (2)	177 (4)

Symmetry codes: (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) x, y - 1, z; (iv) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (v) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z.$

Refinement

$w = 1/[\sigma^2(F_a^2) + (0.0406P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0072 (8)

H atoms were identified from difference Fourier maps and refined freely. Compound (I) crystallizes in a monoclinic unit cell with β close to 90°. A symmetry check using PLATON (Spek, 2003) suggests a smaller orthorhombic unit cell with a short c axis $(c' = \frac{1}{2}c)$. However, inspection of the diffraction data and the refinement results (see Fig. 2) confirms that the larger monoclinic unit cell is correct.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1547). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Crvst. 26, 343-350.
- Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Hohn, F., Pantenburg, I. & Ruschewitz, U. (2002). Chem. Eur. J. 8, 4536-4541.
- McCormick, B. J., Siemer, C., Afroz, F., Wasson, J. R., Eichhorn, D. M., Scott, B., Shah, S., Noffsinger, K. & Kahol, P. K. (2001). Synth. Met. 120, 969-970.
- Pantenburg, I. & Ruschewitz, U. (2002). Z. Anorg. Allg. Chem. 628, 1697-1702
- Ruschewitz, U. & Pantenburg, I. (2002). Acta Cryst. C58, m483-m484.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-RED (Version 1.22) and X-AREA (Version 1.15). Stoe & Cie, Darmstadt, Germany.
- Van Niekerk, J. N. & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.