Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\left[\mathrm{Cu}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the first copper complex of acetylenedicarboxylic acid

Heinrich Billetter, Frauke Hohn, Ingo Pantenburg and Uwe Ruschewitz*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
Correspondence e-mail: uwe.ruschewitz@uni-koeln.de

Received 27 January 2003
Accepted 12 February 2003
Online 21 March 2003

In the title compound, catena-poly[[[triaquacopper(II)]-μ-acetylenedicarboxylato- $\left.\kappa^{2} O: O^{\prime \prime}\right]$ hydrate $],\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cu}^{\text {II }}$ ion is coordinated by two monodentate carboxylate groups in trans positions and three water molecules, thus forming a fivefold coordination polyhedron that can be described as a distorted square pyramid. All atoms are located on general sites. The polyhedra are connected by bifunctional acetylenedicarboxylate ligands, to form almost linear chains parallel to [001]. Hydrogen bonds involving the non-coordinated water molecule connect these chains to form a three-dimensional framework.

Comment

During our studies of coordination polymers of the acetylenedicarboxylate dianion, $\mathrm{C}_{2}(\mathrm{COO})_{2}{ }^{2-}$ (Hohn et al., 2002; Ruschewitz \& Pantenburg, 2002), blue crystals of the title compound, (I), were obtained, and its crystal structure is presented here.

(I)

The structure of (I) comprises fivefold coordination polyhedra at the $\mathrm{Cu}^{\text {II }}$ ions, which are linked by bifunctional acetylenedicarboxylate ligands to form almost linear chains. The coordination polyhedron around the $\mathrm{Cu}^{\mathrm{II}}$ ion, which can be described as a distorted square pyramid, is formed by two monodentate carboxylate groups in trans positions and three water molecules (Fig. 1). As the longest $\mathrm{Cu}-\mathrm{O}$ distance ($\mathrm{Cu} 1-\mathrm{O} 6$) is about $0.3 \AA$ longer than the second longest $\mathrm{Cu}-$ O distance ($\mathrm{Cu} 1-\mathrm{O} 41^{\mathrm{i}}$; Table 1), the Cu coordination can alternatively be described as a slightly distorted square planar

Figure 1
A view of (I), showing the atom-numbering scheme for the asymmetric unit. Displacement ellipsoids are shown at the 50% probability level and H -atom radii are arbitrary.
coordination, with an additional water ligand weakly bonded in an axial position. This coordination of the $\mathrm{Cu}^{\mathrm{II}}$ ion is similar to that found in $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{Cu}-\mathrm{O}=1.96-$ $1.99 \AA$ and $\mathrm{Cu}-\mathrm{OH}_{2}=2.20 \AA$; van Niekerk \& Schoening, 1953). In contrast to the latter compound, however, where a short $\mathrm{Cu}-\mathrm{Cu}$ distance $(2.64 \AA)$ extends the CuO_{5} polyhedron to a distorted octahedron, no short $\mathrm{Cu}-\mathrm{Cu}$ distances are found in (I) [the shortest is $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\text {iv }}=5.246$ (12) \AA] .

The $\mathrm{C}-\mathrm{O}$ bond distances of the coordinating O atoms are significantly longer than the $\mathrm{C}-\mathrm{O}$ distances of the non-coordinating O atoms (Table 1), which indicates that the latter are more characteristic of double bonds and which is consistent with these O atoms having slightly higher $U_{\text {eq }}$ values. The $\mathrm{C}-$ C distances in the acetylenedicarboxylate dianion are as expected for single ($\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 3-\mathrm{C} 4$) and triple $(\mathrm{C} 2 \equiv \mathrm{C} 3)$ bonds (Table 1). The dianion is almost linear (Table 1), but in contrast to $\left[\mathrm{Cd}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Ruschewitz \& Pantenburg, 2002), the carboxylate groups of the anion are not coplanar. The torsion angles are 26.6 (2) and 25.8 (3) ${ }^{\circ}$.

The CuO_{5} polyhedra are linked by the bifunctional carboxylates to form almost linear chains running parallel to [001] (Fig. 2). A linear polymeric chain structure was also found in $\left[\mathrm{Co}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Pantenburg \& Ruschewitz, 2002), which is another example of a coordination polymer of acetylenedicarboxylate that crystallizes in a chain structure, with $\mathrm{Co}^{\mathrm{II}}$ coordinated octahedrally by two monodentate carboxylate groups in trans positions and four water

Figure 2
The crystal packing of (I), showing two polymeric chains connected by hydrogen bonds, which involve the non-coordinated $\mathrm{H} 81 / \mathrm{O} 8 / \mathrm{H} 82$ water molecule. Three of the four hydrogen bonds around O8 are shown, namely O5 . O8, O7 . O8 and O42 \cdots O8 (see Table 2). H atoms have been omitted for clarity.
molecules. However, in $\left[\mathrm{Cd}\left\{\mathrm{C}_{2}(\mathrm{COO})_{2}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Ruschewitz \& Pantenburg, 2002), a polymeric zigzag chain is formed.

In all of the compounds mentioned above, the chains are connected by hydrogen bonds that include additional water molecules. In (I), the shortest hydrogen bonds $[\mathrm{O} \cdots \mathrm{O}=2.694(3)-2.742(3) \AA$] connect the polymeric chains to form layers parallel to (100). These layers are connected by slightly longer hydrogen bonds $[\mathrm{O} \cdots \mathrm{O}=2.759(2)-$ 2.771 (2) \AA] to form a three-dimensional network.

Experimental

$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~g}, 5 \mathrm{mmol})$ and acetylenedicarboxylic acid $(0.57 \mathrm{~g}$, 5 mmol) were dissolved in de-ionized water (20 ml). After slow evaporation at room temperature, blue crystals of (I) formed. These were filtered off and immediately sealed in a capillary, as the crystals decompose slowly in air forming a black shock-sensitive solid which is amorphous to X-rays. This residue is probably $\mathrm{Cu}_{2} \mathrm{C}_{2}$ (McCormick et al., 2001). No decomposition of the single crystal was observed during the X-ray analysis.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.936 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=247.64$	Mo K α radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 12049
$a=6.5261(8) \AA$	reflections
$b=7.0683(9) \AA$	$\theta=1.9-35.3^{\circ}$
$c=18.417(2) \AA$	$\mu=2.59 \mathrm{~mm}^{-1}$
$\beta=90.418(10)^{\circ}$	$T=293(2) \mathrm{K}$
$V=849.54(18) \AA^{\circ}$	Polyhedron, blue
$Z=4$	$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$
Data collection	
Stoe IPDS-II diffractometer	2468 independent reflections
Oscillation φ and ω scans	1766 reflections with $I>2 \sigma(I)$
Absorption correction: numerical	$R_{\text {int }}=0.066$
(X-SHAPE and X-RED; Stoe \&	$\theta_{\max }=30.0^{\circ}$
Cie, 2001)	$h=-9 \rightarrow 9$
$T_{\text {min }}=0.296, T_{\text {max }}=0.541$	$k=-9 \rightarrow 9$
23355 measured reflections	$l=-25 \rightarrow 25$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 7$	$1.9396(18)$	$\mathrm{C} 1-\mathrm{O} 11$	$1.273(2)$
$\mathrm{Cu} 1-\mathrm{O} 11$	$1.9555(15)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.472(3)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.9588(17)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.191(3)$
$\mathrm{Cu} 1-\mathrm{O} 41^{\mathrm{i}}$	$1.9677(14)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.469(3)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$2.2961(19)$	$\mathrm{C} 4-\mathrm{O} 42$	$1.233(2)$
$\mathrm{C} 1-\mathrm{O} 12$	$1.231(3)$	$\mathrm{C} 4-\mathrm{O} 41$	$1.270(3)$
			$92.24(7)$
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 11$	$86.92(8)$	$\mathrm{O} 41^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 6$	$125.76(19)$
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 5$	$169.60(10)$	$\mathrm{O} 12-\mathrm{C} 1-\mathrm{O} 11$	$118.93(18)$
$\mathrm{O} 11-\mathrm{Cu} 1-\mathrm{O} 5$	$92.34(7)$	$\mathrm{O} 12-\mathrm{C} 1-\mathrm{C} 2$	$115.31(18)$
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 41^{\mathrm{i}}$	$89.79(8)$	$\mathrm{O} 11-\mathrm{C} 1-\mathrm{C} 2$	$178.6(3)$
$\mathrm{O} 11-\mathrm{Cu} 1-\mathrm{O} 41^{\mathrm{i}}$	$176.12(7)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$178.0(2)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 41^{\mathrm{i}}$	$90.52(8)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$125.28(19)$
$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 6$	$96.66(9)$	$\mathrm{O} 42-\mathrm{C} 4-\mathrm{O} 41$	$119.17(19)$
$\mathrm{O} 11-\mathrm{Cu} 1-\mathrm{O} 6$	$90.19(7)$	$\mathrm{O} 42-\mathrm{C} 4-\mathrm{C} 3$	$115.55(17)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6$	$93.72(9)$	$\mathrm{O} 41-\mathrm{C} 4-\mathrm{C} 3$	

[^0]Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H51 . ${ }^{\text {O }} 11^{\text {ii }}$	0.78 (4)	2.00 (4)	2.771 (2)	171 (4)
O5-H52 . OO8 $8^{\text {iii }}$	0.73 (4)	2.02 (4)	2.742 (3)	170 (3)
$\mathrm{O} 7-\mathrm{H} 71 \cdots \mathrm{O} 12^{\text {iv }}$	0.79 (4)	1.91 (4)	2.694 (3)	171 (4)
O7-H72 . O 8	0.77 (4)	1.95 (4)	2.696 (3)	164 (4)
	0.85 (5)	1.87 (5)	2.722 (3)	174 (4)
$\mathrm{O} 8-\mathrm{H} 83 \cdots \mathrm{O} 4{ }^{\text {v }}$	0.63 (4)	2.13 (4)	2.759 (2)	177 (4)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.069$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0406 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.069$
$S=0.93$
$(\Delta / \sigma)_{\max }<0.001$
2468 reflections
151 parameters
All H -atom parameters refined
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.42 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0072 (8)
H atoms were identified from difference Fourier maps and refined freely. Compound (I) crystallizes in a monoclinic unit cell with β close to 90°. A symmetry check using PLATON (Spek, 2003) suggests a smaller orthorhombic unit cell with a short c axis ($\left.c^{\prime}=\frac{1}{2} c\right)$. However, inspection of the diffraction data and the refinement results (see Fig. 2) confirms that the larger monoclinic unit cell is correct.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1547). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Hohn, F., Pantenburg, I. \& Ruschewitz, U. (2002). Chem. Eur. J. 8, 45364541.

McCormick, B. J., Siemer, C., Afroz, F., Wasson, J. R., Eichhorn, D. M., Scott, B., Shah, S., Noffsinger, K. \& Kahol, P. K. (2001). Synth. Met. 120, 969970.

Pantenburg, I. \& Ruschewitz, U. (2002). Z. Anorg. Allg. Chem. 628, 16971702.

Ruschewitz, U. \& Pantenburg, I. (2002). Acta Cryst. C58, m483-m484.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-RED (Version 1.22) and $X-A R E A$ (Version 1.15). Stoe \& Cie, Darmstadt, Germany.
Van Niekerk, J. N. \& Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.

[^0]: Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.

